Abstract

In this paper, we utilize a line based pose representation to recognize human actions in videos. We represent the pose in each frame by employing a collection of line-pairs, so that limb and joint movements are better described and the geometrical relationships among the lines forming the human figure are captured. We contribute to the literature by proposing a new method that matches line-pairs of two poses to compute the similarity between them. Moreover, to encapsulate the global motion information of a pose sequence, we introduce line-flow histograms, which are extracted by matching line segments in consecutive frames. Experimental results on Weizmann and KTH datasets emphasize the power of our pose representation, and show the effectiveness of using pose ordering and line-flow histograms together in grasping the nature of an action and distinguishing one from the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.