Abstract

We study the dispersion relations of mesons in a particular hot strongly coupled supersymmetric gauge theory plasma. We find that at large momentum k the dispersion relations become ω ≃ v0k+a+b/k+. . ., where the limiting velocity v0 is the same for mesons with any quantum numbers and depends only on the ratio of the temperature to the quark mass T/mq. We compute a and b in terms of the meson quantum numbers and T/mq. The limiting meson velocity v0 becomes much smaller than the speed of light at temperatures below but close to Tdiss, the temperature above which no meson bound states at rest in the plasma are found. From our result for v0(T/mq), we find that the temperature above which no meson bound states with velocity v exist is Tdiss(v) ≃ (1 − v 2 ) 1/4 Tdiss, up to few percent corrections. We thus confirm by direct calculation of meson dispersion relations a result inferred indirectly in previous work via analysis of the screening length between a static quark and antiquark in a moving plasma. Although we do not do our calculations in QCD, we argue that the qualitative features of the dispersion relation we compute, including in particular the relation between dissociation temperature and meson velocity, may apply to bottomonium and charmonium mesons propagating in the strongly coupled plasma of QCD. We discuss how our results can contribute to understanding quarkonium physics in heavy ion collisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.