Abstract

An important part in the numerical simulation of tsunami and storm surge events is the accurate modeling of flooding and the appearance of dry areas when the water recedes. This paper proposes a new algorithm to model inundation events with piecewise linear Runge–Kutta discontinuous Galerkin approximations applied to the shallow water equations. This study is restricted to the one-dimensional case and shows a detailed analysis and the corresponding numerical treatment of the inundation problem.The main feature is a velocity based “limiting” of the momentum distribution in each cell, which prevents instabilities in case of wetting or drying situations. Additional limiting of the fluid depth ensures its positivity while preserving local mass conservation. A special flux modification in cells located at the wet/dry interface leads to a well-balanced method, which maintains the steady state at rest. The discontinuous Galerkin scheme is formulated in a nodal form using a Lagrange basis. The proposed wetting and drying treatment is verified with several numerical simulations. These test cases demonstrate the well-balancing property of the method and its stability in case of rapid transition of the wet/dry interface. We also verify the conservation of mass and investigate the convergence characteristics of the scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.