Abstract

We apply a limited-memory quasi-Newton (QN) method to the 1D magnetotelluric (MT) inverse problem. Using this method we invert a realistic synthetic MT impedance data set calculated for a layered earth model. The calculation of gradients based on the adjoint method speeds up the inverse problem solution many times. In addition, regularization stabilizes the QN inversion result and a few correction pairs are sufficient to produce reasonable results. Comparison with the L-BFGS-B algorithm shows similar convergence rates. This study is a first step towards the solution of large-scale electromagnetic problems, with a full treatment of the 3D conductivity structure of the earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.