Abstract

Asymptotic distributions for a family of time-varying symmetric statistics formed from an infinite particle system are derived and a representation for the limit is obtained in terms of multiple stochastic integrals. This family arises from a system of Brownian particles diffusing in R whose initial configuration is given via a Poisson point process on R. It is shown that a symmetric statistic of order p in this family can be considered as an element of C{[0,T], S′(R p)} and as the rate of the Poisson process approaches infinity these symmetric statistics converge in distribution as random elements of the above mentioned function space. A stochastic partial differential equation satisfied by the limit is obtained. Finally, a representation for the limit as a mixed multiple stochastic integral with respect to a space-time white noise and a white noise on R, is derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.