Abstract
It is well known that Fleming-Viot superprocesses can be obtained from the Dawson-Watanabe superprocesses by conditioning the latter to have constant total mass. The same question is investigated for measure-valued branching processes with interacting intensity independent of the geographical position. It is showed that a sequence of conditioned probability laws of this kind of interacting measure-valued branching processes also approximates to the probability law of Fleming-Viot superprocesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.