Abstract

Recently, an interesting quantity called the quantum Rényi divergence (or ‘sandwiched’ Rényi relative entropy) was defined for pairs of positive semi-definite operators ρ and σ. It depends on a parameter α and acts as a parent quantity for other relative entropies which have important operational significance in quantum information theory: the quantum relative entropy and the min- and max-relative entropies. There is, however, another relative entropy, called the 0-relative Rényi entropy, which plays a key role in the analysis of various quantum information-processing tasks in the one-shot setting. We prove that the 0-relative Rényi entropy is obtainable from the quantum Rényi divergence only if ρ and σ have equal supports. This, along with existing results in the literature, suggests that it suffices to consider two essential parent quantities from which operationally relevant entropic quantities can be derived—the quantum Rényi divergence with parameter α ⩾ 1/2, and the α-relative Rényi entropy with α ∈ [0, 1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call