Abstract

Let $(M,g)$ be a compact Riemannian manifold on which a trace-free and divergence-free $\sigma \in W^{1,p}$ and a positive function $\tau \in W^{1,p}$, $p > n$, are fixed. In this paper, we study the vacuum Einstein constraint equations using the well known conformal method with data $\sigma$ and $\tau$. We show that if no solution exists then there is a non-trivial solution of another non-linear limit equation on $1$-forms. This last equation can be shown to be without solutions no solution in many situations. As a corollary, we get existence of solutions of the vacuum Einstein constraint equation under explicit assumptions which in particular hold on a dense set of metrics $g$ for the $C^0$-topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.