Abstract

BackgroundTo increase power when analyzing fMRI data, researchers often define functional regions of interest (fROIs). It is crucial that this fROI is defined with an optimal balance between both false positives and false negatives to ensure maximal spatial accuracy and to avoid potentially biased results in the main fMRI experiment. Additionally, since the fROI is defined in each subject separately, the used method should attune to the general level of activation of the individual. New methodWe investigate the benefits of the maximized likelihood ratio (mLR) method. This method is based on the likelihood paradigm where likelihood ratios are used to reflect relative statistical evidence in favor of an a priori defined practically relevant alternative hypothesis as compared to the null hypothesis of no activation. ResultsThrough both simulations and real data, we show that the mLR method provides cumulative evidence for voxels that are active with an effect size that is larger than the one a priori defined in the alternative. Furthermore, an optimal balance between Type I and Type II errors is achieved when the alternative is an underestimation of the true effect size. Comparison with existing methodsThe mLR method is compared with false discovery rate corrected null hypothesis significance testing and regular likelihood ratio testing. It performs as good as or outperformed both methods in both detection of practically relevant voxels and the trade- off between false positives and false negatives. ConclusionsThe mLR method provides fROIs that are both spatially accurate and practically relevant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.