Abstract

Deep neural networks are currently employed to detect weapons, and although these techniques provide a high level of accuracy, it still suffers from large weight parameters and a slow inference speed. When it comes to real-world applications, such as weapon detection, these methods are often not suitable for deployment on embedded devices. Because of the huge number of parameters and poor efficiency. The most recent object detection technique, which belongs to the YOLOv5 class, is commonly used for detecting weapons. However, it faces some difficulties such as high computational parameters and an unfavorable detection rate. to solve these shortcomings. an enhanced lightweight Yolov5s approach is suggested. Which consists of a combination of YOLOv5 and GhostNet modules. To evaluate the efficacy of the suggested technique, a set of experiments was performed on the Sohas weapon dataset., which is commonly used as a reference dataset in the field. Compared to the original YOLOv5, the results indicate a slight increase in the proposed model's mean Average Precision (mAP). Furthermore, there has been a reduction of 2.7 in GFLOPs and weights, and the number of model parameters has decreased by 1.42.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.