Abstract
AbstractAutomatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.