Abstract

In some hospitals in remote areas, due to the lack of MRI scanners with high magnetic field intensity, only low-resolution MRI images can be obtained, hindering doctors from making correct diagnoses. In our study, higher-resolution images were obtained through low-resolution MRI images. Moreover, as our algorithm is a lightweight algorithm with a small number of parameters, it can be carried out in remote areas under the condition of the lack of computing resources. Moreover, our algorithm is of great clinical significance in providing references for doctors' diagnoses and treatment in remote areas. We compared different super-resolution algorithms to obtain high-resolution MRI images, including SRGAN, SPSR, and LESRCNN. A global skip connection was applied to the original network of LESRCNN to use global semantic information to get better performance. Experiments reported that our network improved SSMI by 0.8% and also achieved an obvious increase in PSNR, PI, and LPIPS compared to LESRCNN in our dataset. Similar to LESRCNN, our network has a very short running time, a small number of parameters, low time complexity, and low space complexity while ensuring high performance compared to SRGAN and SPSR. Five MRI doctors were invited for a subjective evaluation of our algorithm. All agreed on significant improvements and that our algorithm could be used clinically in remote areas and has great value. The experimental results demonstrated the performance of our algorithm in super-resolution MRI image reconstruction. It allows us to obtain high-resolution images in the absence of high-field intensity MRI scanners, which have great clinical significance. The short running time, a small number of parameters, low time complexity, and low space complexity ensure that our network can be used in grassroots hospitals in remote areas that lack computing resources. We can reconstruct high-resolution MRI images in a short time, thus saving time for patients. Our algorithm can be biased towards practical applications; however, doctors have affirmed the clinical value of our algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.