Abstract

Sentiment analysis aims to mine polarity features in the text, which can empower intelligent terminals to recognize opinions and further enhance interaction capabilities with customers. Considerable progress has been made using recurrent neural networks or pre-trained models to learn semantic representations. However, recently published models with complex structures require increasing computational resources to reach state-of-the-art (SOTA) performance. It is still a significant challenge to deploy these models to run on micro-intelligent terminals with limited computing power and memory. This paper proposes a lightweight and efficient framework based on hybrid multi-grained embedding on sentiment analysis (MC-GGRU). The gated recurrent unit model is designed to incorporate a global attention structure that allows contextual representations to be learned from unstructured text using word tokens. In addition, a multi-grained feature layer can further enrich sentence representation features with implicit semantics from characters. Through hybrid multi-grained representation, MC-GGRU achieves high inference performance with a shallow structure. The experimental results of five public datasets show that our method achieves SOTA for sentiment classification with a trade-off between accuracy and speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.