Abstract

Body sensor networks (BSNs) for healthcare have more stringent security and context adaptation requirements than required in large-scale sensor networks for environment monitoring. Policy-based management enables flexible adaptive behavior by supporting dynamic loading, enabling and disabling of policies without shutting down nodes. This overcomes many of the limitations of sensor operating systems, such as TinyOS, which do not support dynamic modification of code. Alternative schemes for adaptation, such as network programming, have a high communication cost and suffer from operational interruption. In addition, a policy-driven approach enables fine-grained access control through specifying authorization policies. This paper presents the design, implementation and evaluation of an efficient policy system called Finger which enables policy interpretation and enforcement on distributed sensors to support sensor level adaptation and fine-grained access control. It features support for dynamic management of policies, minimization of resources usage, high responsiveness and node autonomy. The policy system is integrated as a TinyOS component, exposing simple, well-defined interfaces which can easily be used by application developers. The system performance in terms of processing latency and resource usage is evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.