Abstract
With the widespread application of drone technology, the demand for pest detection and identification from low-resolution and noisy images captured with drones has been steadily increasing. In this study, a lightweight pest identification model based on Transformer and super-resolution sampling techniques is introduced, aiming to enhance identification accuracy under challenging conditions. The Transformer model was found to effectively capture spatial dependencies in images, while the super-resolution sampling technique was employed to restore image details for subsequent identification processes. The experimental results demonstrated that this approach exhibited significant advantages across various pest image datasets, achieving Precision, Recall, mAP, and FPS scores of 0.97, 0.95, 0.95, and 57, respectively. Especially in the presence of low resolution and noise, this method was capable of performing pest identification with high accuracy. Furthermore, an adaptive optimizer was incorporated to enhance model convergence and performance. Overall, this study offers an efficient and accurate method for pest detection and identification in practical applications, holding significant practical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.