Abstract
The specific characteristics of remote sensing images, such as large directional variations, large target sizes, and dense target distributions, make target detection a challenging task. To improve the detection performance of models while ensuring real-time detection, this paper proposes a lightweight object detection algorithm based on an attention mechanism and YOLOv5s. Firstly, a depthwise-decoupled head (DD-head) module and spatial pyramid pooling cross-stage partial GSConv (SPPCSPG) module were constructed to replace the coupled head and the spatial pyramid pooling-fast (SPPF) module of YOLOv5s. A shuffle attention (SA) mechanism was introduced in the head structure to enhance spatial attention and reconstruct channel attention. A content-aware reassembly of features (CARAFE) module was introduced in the up-sampling operation to reassemble feature points with similar semantic information. In the neck structure, a GSConv module was introduced to maintain detection accuracy while reducing the number of parameters. Experimental results on remote sensing datasets, RSOD and DIOR, showed an improvement of 1.4% and 1.2% in mean average precision accuracy compared with the original YOLOv5s algorithm. Moreover, the algorithm was also tested on conventional object detection datasets, PASCAL VOC and MS COCO, which showed an improvement of 1.4% and 3.1% in mean average precision accuracy. Therefore, the experiments showed that the constructed algorithm not only outperformed the original network on remote sensing images but also performed better than the original network on conventional object detection images.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.