Abstract
Due to the more dramatic multi-scale variations and more complicated foregrounds and backgrounds in optical remote sensing images (RSIs), the salient object detection (SOD) for optical RSIs becomes a huge challenge. However, different from natural scene images (NSIs), the discussion on the optical RSI SOD task still remains scarce. In this paper, we propose a multi-scale context network, namely MSCNet, for SOD in optical RSIs. Specifically, a multi-scale context extraction module is adopted to address the scale variation of salient objects by effectively learning multi-scale contextual information. Meanwhile, in order to accurately detect complete salient objects in complex backgrounds, we design an attention-based pyramid feature aggregation mechanism for gradually aggregating and refining the salient regions from the multi-scale context extraction module. Extensive experiments on two benchmarks demonstrate that MSCNet achieves competitive performance with only 3.26M parameters. The code will be available at https://github.com/NuaaYH/MSCNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.