Abstract

The process of fusing the rich spectral information of a low spatial resolution hyperspectral image (LR-HSI) with the spatial information of a high spatial resolution multispectral image (HR-MSI) to obtain an HSI with the spatial resolution of an MSI image is called hyperspectral image fusion (HIF). To reconstruct hyperspectral images at video frame rate, we propose a lightweight multi-level information network (MINet) for multispectral and hyperspectral image fusion. Specifically, we develop a novel lightweight feature fusion model, namely residual constraint block based on global variance fine-tuning (GVF-RCB), to complete the feature extraction and fusion of hyperspectral images. Further, we define a residual activity factor to judge the learning ability of the residual module, thereby verifying the effectiveness of GVF-RCB. In addition, we use cascade cross-level fusion to embed the different spectral bands of the upsampled LR-HSI in a progressive manner to compensate for lost spectral information at different levels and to maintain spatial high frequency information at all times. Experiments on different datasets show that our MINet outperforms the state-of-the-art methods in terms of objective metrics, in particular by requiring only 30% of the running time and 20% of the number of parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call