Abstract
Online detection of digital printing defects is a necessary but challenging topic. The performance of the current detection methods is still not ideal for the diversified patterns of digital printing fabric defects and the realtime requirements of online detection. In this paper, we proposed a lightweight model of digital printing fabric defect detection based on YOLOX. Firstly, according to the characteristics of many types of defects and complex background of digitally printed fabrics, a defect detection network structure based on YOLOX is constructed. Then, the SE attention module is introduced to enhance important features and weaken unimportant features, which make the extracted features more directional. And it can further solve the influence of small feature size on the detection accuracy of small targets. The experimental results show that the proposed model has a detection accuracy of 66.2 mAP on our self-built dataset, which is 2.7 percentage points higher than YOLOX. This method can effectively solve the problem that low detection accuracy of small defects. The proposed model can meet the real-time requirements and improve the detection accuracy of small target defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.