Abstract

BackgroundBrain tumor segmentation plays a significant role in clinical treatment and surgical planning. Recently, several deep convolutional networks have been proposed for brain tumor segmentation and have achieved impressive performance. However, most state-of-the-art models use 3D convolution networks, which require high computational costs. This makes it difficult to apply these models to medical equipment in the future. Additionally, due to the large diversity of the brain tumor and uncertain boundaries between sub-regions, some models cannot well-segment multiple tumors in the brain at the same time.ResultsIn this paper, we proposed a lightweight hierarchical convolution network, called LHC-Net. Our network uses a multi-scale strategy which the common 3D convolution is replaced by the hierarchical convolution with residual-like connections. It improves the ability of multi-scale feature extraction and greatly reduces parameters and computation resources. On the BraTS2020 dataset, LHC-Net achieves the Dice scores of 76.38%, 90.01% and 83.32% for ET, WT and TC, respectively, which is better than that of 3D U-Net with 73.50%, 89.42% and 81.92%. Especially on the multi-tumor set, our model shows significant performance improvement. In addition, LHC-Net has 1.65M parameters and 35.58G FLOPs, which is two times fewer parameters and three times less computation compared with 3D U-Net.ConclusionOur proposed method achieves automatic segmentation of tumor sub-regions from four-modal brain MRI images. LHC-Net achieves competitive segmentation performance with fewer parameters and less computation than the state-of-the-art models. It means that our model can be applied under limited medical computing resources. By using the multi-scale strategy on channels, LHC-Net can well-segment multiple tumors in the patient’s brain. It has great potential for application to other multi-scale segmentation tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call