Abstract

In this article, we present a novel lightweight path for deep residual neural networks. The proposed method integrates a simple plug-and-play module, i.e., a convolutional encoder-decoder (ED), as an augmented path to the original residual building block. Due to the abstract design and ability of the encoding stage, the decoder part tends to generate feature maps where highly semantically relevant responses are activated, while irrelevant responses are restrained. By a simple elementwise addition operation, the learned representations derived from the identity shortcut and original transformation branch are enhanced by our ED path. Furthermore, we exploit lightweight counterparts by removing a portion of channels in the original transformation branch. Fortunately, our lightweight processing does not cause an obvious performance drop but brings a computational economy. By conducting comprehensive experiments on ImageNet, MS-COCO, CUB200-2011, and CIFAR, we demonstrate the consistent accuracy gain obtained by our ED path for various residual architectures, with comparable or even lower model complexity. Concretely, it decreases the top-1 error of ResNet-50 and ResNet-101 by 1.22% and 0.91% on the task of ImageNet classification and increases the mmAP of Faster R-CNN with ResNet-101 by 2.5% on the MS-COCO object detection task. The code is available at https://github.com/Megvii-Nanjing/ED-Net.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.