Abstract

Automatic and fast segmentation of retinal vessels in fundus images is a prerequisite in clinical ophthalmic diseases; however, the high model complexity and low segmentation accuracy still limit its application. This paper proposes a lightweight dual-path cascaded network (LDPC-Net) for automatic and fast vessel segmentation. We designed a dual-path cascaded network via two U-shaped structures. Firstly, we employed a structured discarding (SD) convolution module to alleviate the over-fitting problem in both codec parts. Secondly, we introduced the depthwise separable convolution (DSC) technique to reduce the parameter amount of the model. Thirdly, a residual atrous spatial pyramid pooling (ResASPP) model is constructed in the connection layer to aggregate multi-scale information effectively. Finally, we performed comparative experiments on three public datasets. Experimental results show that the proposed method achieved superior performance on the accuracy, connectivity, and parameter quantity, thus proving that it can be a promising lightweight assisted tool for ophthalmic diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.