Abstract
Existing traditional and ConvNet-based methods for light field depth estimation mainly work on the narrow-baseline scenario. This paper explores the feasibility and capability of ConvNets to estimate depth in another promising scenario: wide-baseline light fields. Due to the deficiency of training samples, a large-scale and diverse synthetic wide-baseline dataset with labelled data is introduced for depth prediction tasks. Considering the practical goal for real-world applications, we design an end-to-end trained lightweight convolutional network to infer depths from light fields, called LLF-Net. The proposed LLF-Net is built by incorporating a cost volume which allows variable angular light field inputs and an attention module that enables to recover details at occlusion areas. Evaluations are made on the synthetic and real-world wide-baseline light fields, and experimental results show that the proposed network achieves the best performance when compared to recent state-of-the-art methods. We also evaluate our LLF-Net on narrow-baseline datasets, and it consequently improves the performance of previous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.