Abstract

Bladder volume assessments are crucial for managing urinary disorders. Ultrasound imaging (US) is a preferred noninvasive, cost-effective imaging modality for bladder observation and volume measurements. However, the high operator dependency of US is a major challenge due to the difficulty in evaluating ultrasound images without professional expertise. To address this issue, image-based automatic bladder volume estimation methods have been introduced, but most conventional methods require high-complexity computing resources that are not available in point-of-care (POC) settings. Therefore, in this study, a deep learning-based bladder volume measurement system was developed for POC settings using a lightweight convolutional neural network (CNN)-based segmentation model, which was optimized on a low-resource system-on-chip (SoC) to detect and segment the bladder region in ultrasound images in real time. The proposed model achieved high accuracy and robustness and can be executed on the low-resource SoC at 7.93 frames per second, which is 13.44 times faster than the frame rate of a conventional network with negligible accuracy drawbacks (0.004 of the Dice coefficient). The feasibility of the developed lightweight deep learning network was demonstrated using tissue-mimicking phantoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.