Abstract
Real and apparent age estimation of human face has attracted increased attention due to its numerous real-world applications. Different intelligent application scenarios can benefit from these computer-based systems that predict the ages of people correctly. Automatic apparent age system is particularly useful in medical diagnosis, facial beauty product development, movie role casting, the effect of plastic surgery, and anti-aging treatment. Predicting the real and apparent age of people has been quite difficult for both machines and humans. More recently, Deep learning with Convolutional Neural Networks (CNNs) methods have been extensively used for these classification task. It has incomparable advantages in extracting discriminative image features from human faces. However, many of the existing CNN-based methods are designed to be deeper and larger with more complex layers that makes it challenging to deploy on mobile devices with resource-constrained features. Therefore, we design a lightweight CNN model of fewer layers to estimate the real and apparent age of individuals from unconstrained real-time face images that can be deployed on mobile devices. The experimental results, when analyzed for classification accuracy on FG-NET, MORPH-II and APPA-REAL, with large-scale face images containing both real and apparent age annotations, show that our model obtains a state-of-the-art performance in both real and apparent age classification when compared to state-of-the-art methods. The new results and model size, therefore, confirm the usefulness of the model on resource-constrained mobile devices.
Highlights
Age estimation of faces is a very prolific area of research within the computer vision community [1], [2]
The difference between the traditional real age estimation and apparent age estimation is that the age labels in apparent are annotated by human assessors rather than the real biological age
RELATED WORKS we present a review of the related works in real and apparent age estimation
Summary
Age estimation of faces is a very prolific area of research within the computer vision community [1], [2]. Deep learning and CNN have been effectively employed to transform the face images to output the age label [17] This approach is different from handcrafted-based methods that manually extract the features from the face. Viriri: Lightweight CNN for Real and Apparent Age Estimation in Unconstrained Face Images defining a set of algorithms. We design a multi-task lightweight CNN model that accurately estimates the real and apparent age of human faces, which can be deployed on mobile terminals. The contributions of this paper are summarized as follows: 1) We propose a multi-task lightweight convolutional neural network model for real and apparent age estimation of unconstrained faces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.