Abstract

Concurrent programs often exhibit bugs due to unintended interferences among the concurrent threads. Such bugs are often hard to reproduce because they typically happen under very specific interleaving of the executing threads. Basically, it is very hard to fix a bug (or software failure) in concurrent programs without being able to reproduce it. In this paper, we present an approach, called ConCrash, that automatically and deterministically reproduces concurrent failures by recording logical thread schedule and generating unit tests. For a given bug (failure), ConCrash records the logical thread scheduling order and preserves object states in memory at runtime. Then, ConCrash reproduces the failure offline by simply using the saved information without the need for JVM-level or OS-level support. To reduce the runtime performance overhead, ConCrash employs a static data race detection technique to report potential possible race conditions, and only instruments such places. We implement the ConCrash approach in a prototype tool for Java and experimented on a number of multi-threaded Java benchmarks. As a result, we successfully reproduced a number of real concurrent bugs (e.g., deadlocks, data races and atomicity violation) within an acceptable overhead.KeywordsConcurrent ProgramGenerate Test CaseData RaceGlobal ClockThread ScheduleThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call