Abstract

To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with d-neurons and d outputs, a Han-layer reduces the number of parameters and the corresponding computational complexity from O(d2) to O(d). The Han-layer structure guarantees that the Jacobian of the layer function is always orthogonal, thus ensuring gradient stability (i.e., free of gradient vanishing or exploding issues) for any Han-layer sub-networks. Extensive numerical experiments show that one can strategically use Han-layers to replace fully connected (FC) layers, reducing the number of model parameters while maintaining or even improving the generalization performance. We will also showcase the capabilities of the Han-layer architecture on a few small stylized models, and discuss its current limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.