Abstract
The rapid development of DeepFake technologies has brought great challenges to the authenticity of video contents. It is of vital importance to develop DeepFake detection methods, among which three-dimensional (3D) convolution neural networks (CNN) have attracted wide interest and achieved satisfying performances. However, there are few 3D CNNs designed for DeepFake detection and the parameters of them are large, which cause heavy memory and storage consumption. In this paper, a lightweight 3D CNN is proposed for DeepFake detection. Channel transformation module is designed to extract features with much fewer parameters in higher level. Serving as spatial-temporal module, 3D CNNs are adopted to fuse the spatial features in time dimension. To suppress frame content and highlight frame texture, spatial rich model features are extracted from the input frames, which helps the spatial-temporal module achieve better performance. Experimental results show that the number of parameters of the proposed network is much less than those of other networks and the proposed network outperforms other state-of-the-art DeepFake detection methods on mainstream DeepFake data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.