Abstract
Lightning-caused wildfires are responsible for substantial losses of lives and property worldwide. Convective storms can create large numbers of ignitions that can overwhelm suppression efforts. Both long- and short-term risk planning could benefit from daily, spatially-explicit forecasts of lightning ignitions. We fitted a logistic regression generalised additive model to lightning-caused ignitions in the state of Victoria, Australia. We proposed a new method for model selection that complemented existing methods and further reduced the number of variables in the model with minimal change to predictive power. We introduced an approach for deconstructing ignition forecasts into contributions from the individual covariates, which could allow model output to be more readily integrated with existing intuitive understandings of ignition likelihood. Our method of model selection reduced the number of variables in the model by 37.5% with little change to the predictive power. The final model showed good predictive ability (AUC 0.859) and we demonstrated the utility of the model for short term forecasting by comparing model predictions with observed lightning-caused fires over three time periods, two of which had extreme fire conditions, while the third was randomly chosen from our validation dataset. The model presented in this paper shows good predictive power and advancements in model output could allow fire managers to more easily interpret model forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.