Abstract

Convolutional Neural Networks (CNNs) have achieved remarkable results in the field of infrared image enhancement. However, the research on the visual perception mechanism and the objective evaluation indicators for enhanced infrared images is still not in-depth enough. To make the subjective and objective evaluation more consistent, this paper uses a perceptual metric to evaluate the enhancement effect of infrared images. The perceptual metric mimics the early conversion process of the human visual system and uses the normalized Laplacian pyramid distance (NLPD) between the enhanced image and the original scene radiance to evaluate the image enhancement effect. Based on this, this paper designs an infrared image-enhancement algorithm that is more conducive to human visual perception. The algorithm uses a lightweight Fully Convolutional Network (FCN), with NLPD as the similarity measure, and trains the network in a self-supervised manner by minimizing the NLPD between the enhanced image and the original scene radiance to achieve infrared image enhancement. The experimental results show that the infrared image enhancement method in this paper outperforms existing methods in terms of visual perception quality, and due to the use of a lightweight network, it is also the fastest enhancement method currently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.