Abstract

The control of vascular remodeling mediated by transcription factor HIF-1α is critical in the treatment of several diseases including cancer, retinopathies, chronic wounds, and ischemic heart disease, among others. Gene silencing using a small interfering RNA (siRNA) is a promising therapeutic strategy to regulate HIF-1α; however, the delivery systems developed so far have limited endothelial targeting and efficiency. Herein, we have synthesized a light-triggerable polymeric nanoparticle (NP) library composed of 110 formulations which showed variable morphology, charge and disassembly rates after UV exposure. More than 35% of the formulations of the library were more efficient in gene knockdown than the siRNA delivered by a commercial transfection agent (lipofectamine RNAiMAX). The most efficient siRNA delivery formulations were tested against different cell types to identify one with preferential targeting to endothelial cells. Using a two-step methodology, we have identified a formulation that shows exquisite targeting to endothelial cells and is able to deliver more efficiently the siRNA that modulates HIF-1α than commercial transfection agents. Overall, the strategy reported here increases the specificity for tissue regulation and the efficiency for the intracellular delivery of siRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.