Abstract
The selective conversion of 5-hydroxymethyfurfural (HMF), a biomass-derived platform molecule, to value added chemicals can ease the burden on petroleum-based fine chemical synthesis. The active contribution of renewable energy sources along with low cost, environmental friendliness, and a simple reaction system must be adopted for better sustainability. In this context, photocatalytic selective hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved over P25 titania nanoparticles without chemical squander. Simultaneously the photo-oxidation of p-methoxybenzyl alcohol (MeOBA) to p-methoxybenzaldehyde (MeOBaL), similar to biomass-derived vanillin, was carried out, abolishing the need of additional redox reagents. This system put forward the competent employment of photogenerated excitons for the valorization of lignocellulosic biomass to fine chemicals, which is an urgent requirement for sustainable chemical synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.