Abstract

The anomalous magnetic moments of the electron and the muon are interesting observables, since they can be measured with great precision and their values can be computed with excellent accuracy within the Standard Model (SM). The current experimental measurement of this quantities show a deviation of a few standard deviations with respect to the SM prediction, which may be a hint of new physics. The fact that the electron and the muon masses differ by two orders of magnitude and the deviations have opposite signs makes it difficult to find a common origin of these anomalies. In this work we introduce a complex singlet scalar charged under a Peccei-Quinn-like (PQ) global symmetry together with the electron transforming chirally under the same symmetry. In this realization, the CP-odd scalar couples to electron only, while the CP-even part can couple to muons and electrons simultaneously. In addition, the CP-odd scalar can naturally be much lighter than the CP-even scalar, as a pseudo-Goldstone boson of the PQ-like symmetry, leading to an explanation of the suppression of the electron anomalous magnetic moment with respect to the SM prediction due to the CP-odd Higgs effect dominance, as well as an enhancement of the muon one induced by the CP-even component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.