Abstract

Children with obesity typically have larger left ventricular heart dimensions during adulthood. However, whether this is due to a persistent effect of adiposity extending into adulthood is challenging to disentangle due to confounding factors throughout the lifecourse. We conducted a multivariable mendelian randomization (MR) study to separate the independent effects of childhood and adult body size on 4 magnetic resonance imaging (MRI) measures of heart structure and function in the UK Biobank (UKB) study. Strong evidence of a genetically predicted effect of childhood body size on all measures of adulthood heart structure was identified, which remained robust upon accounting for adult body size using a multivariable MR framework (e.g., left ventricular end-diastolic volume (LVEDV), Beta = 0.33, 95% confidence interval (CI) = 0.23 to 0.43, P = 4.6 × 10-10). Sensitivity analyses did not suggest that other lifecourse measures of body composition were responsible for these effects. Conversely, evidence of a genetically predicted effect of childhood body size on various other MRI-based measures, such as fat percentage in the liver (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) and pancreas (Beta = 0.21, 95% CI = 0.10 to 0.33, P = 3.9 × 10-4), attenuated upon accounting for adult body size. Our findings suggest that childhood body size has a long-term (and potentially immutable) influence on heart structure in later life. In contrast, effects of childhood body size on other measures of adulthood organ size and fat percentage evaluated in this study are likely explained by the long-term consequence of remaining overweight throughout the lifecourse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call