Abstract

Camelina sativa (L.) is a promising crop for biodiesel production that avoids many of the potential pitfalls of traditional biofuel crops, such as land use change (LUC) and food versus fuel. In this study the environmental viability of camelina biodiesel was assessed using life cycle analysis (LCA) methodology. The LCA was conducted using the spreadsheet model dubbed KABAM. KABAM found that camelina grown as a niche filling crop (in rotation with wheat or as a double crop) reduces greenhouse gas (GHG) emissions and fossil fuel use by 40–60% when compared to petroleum diesel. Furthermore, by avoiding LUC emissions, camelina biodiesel emits fewer GHGs than traditional soybean and canola biodiesel. Finally, a sensitivity analysis concluded that in order to maintain and increase the environmental viability of camelina and other niche filling biofuel crops, researchers and policy makers should focus their efforts on achieving satisfactory yields (1000–2000 kg/ha) while reducing nitrogen fertilizer inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.