Abstract

PurposeStakeholders across the food product supply chain are increasingly interested in understanding the environmental effects of food production. Mushrooms are a unique food crop, grown in the absence of sunlight and in climate controlled environments. Few life cycle assessment (LCA) studies have been conducted previously on mushrooms and none in the USA. This study assesses the cradle-to-gate life cycle environmental impacts of mushroom production in the USA from cultivation to harvest and preparation for bulk packaging.MethodsThis process-based LCA uses primary data from mushroom producers to define the foreground system. Primary data for operations were collected from compost and mushroom producers in the USA, representing approximately one third of US mushroom production. Secondary data were collected from life cycle inventory databases and other published resources to define background systems and process emissions from the foreground system. The study uses a functional unit of 1 kg mushrooms and applies the Institute of Environmental Sciences (CML) impact analysis method, supplemented with additional impact categories for energy use, freshwater use, and 20 and 100-year global warming potentials (GWPs) with and without carbon-climate feedback.Results and discussionResults show that GWP100 impacts range from 2.13 to 2.95 kg CO2e/kg of mushroom product, slightly lower than previous mushroom LCAs conducted for Australian and Spanish production systems. Electricity and fossil fuels were the most impactful inputs, not just for GWP, but most other impact categories as well, followed by compost materials, compost emissions, and transportation. Transport of peat, a key input to the mushroom production substrate, and compost materials contributed to 60 and 36% of the total transportation impacts, respectively. The co-product generated by the system, spent mushroom substrate (SMS), was handled using the displacement method. SMS generated very small credits to the system, less than 1% in every impact category.ConclusionsRecommendations to improve the commercial mushroom production process include reducing electricity and fossil fuel use through on-site renewable energy generation. This recommendation is primarily relevant to mushroom producers in the Eastern region of the USA, where the electricity grid is the most coal and fossil fuel-intensive. Future work should contextualize the results of this study in the context of nutrition, meal, or diet-level assessments to enable informed food choices.

Highlights

  • Global mushroom production has grown dramatically since the late 1990s, increasing more than fivefold to approximately 34 million t in 2013, with average per-capita consumption growing significantly as well (Royse et al 2016)

  • The study results provide a baseline estimate of the environmental impacts of mushrooms, which will facilitate improved understanding of the environmental impacts of different steps in mushroom production and the impacts of diets that include mushrooms

  • Based on the study results, recommendations are provided to suggest where improvements can be made within the mushroom production system, from resource extraction to facility gate

Read more

Summary

Introduction

Global mushroom production has grown dramatically since the late 1990s, increasing more than fivefold to approximately 34 million t in 2013, with average per-capita consumption growing significantly as well (Royse et al 2016). China is the world’s largest producer of edible mushrooms, supplying over 30 million t, or 87% of global supply (Royse et al 2016). Mushrooms contain all of the essential amino acids and have a very low fat content, which has led to efforts to increase consumption as part of healthier diets (USDA Mushroom Council 2013); while US per-capita consumption has steadily increased over the last few decades, it remains well below the global average, which exceeds four and a half kilogram per annum (Royse et al 2016)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call