Abstract

Optimization of material resources, energy efficiency and reduction of environmental impact are basic aspects in selection of a construction system. The aim of this study is to evaluate the environmental impact generated by different shielding systems for walls of an X-ray room in healthcare buildings. Eight commercial construction systems for anti-X shielding were analysed. A Life Cycle Assessment (LCA) was performed by SimaPro using the Ecoinvent database, and a single-score damage category analysis was performed for midpoint and endpoint levels. Prices of installation and working time employed in the construction of a functional unit of each system were obtained. Solutions with clay brick, cast-in-place reinforced concrete and sprayed concrete were the most favourable for the different categories. Sprayed concrete obtained 6.739 points/m2 of against 165.12 points/m2 of rolled steel option. The damage to human health occupies between 41% and 87% of the total impact in the protection areas. The impact category of human toxicity is also the broadest in the midpoint approach. Considering time and cost of implementation, clay brick solutions proved to be the most favourable, along with cast-in-place reinforced concrete and barite concrete. System #6 is the most environmentally friendly, 1.6 times less than the next one (which is #4), although its unit price is 1.94 times the cheapest (which is #2) and its execution time is 1.89 times the lowest (which is #2 again). The knowledge generated in this study will improve investment decision making for the planning departments of the Sanitary Systems, obtaining an economic, social and environmental benefit. The main novelty of the work lies in the object of the study (X-ray room) as well as in the integration of LCA and economic aspects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call