Abstract

The nuclear pore complex exhibits different manifestations across eukaryotes, with certain components being restricted to specific clades. Several studies have been conducted to delineate the nuclear pore complex composition in various model organisms. Due to its pivotal role in cell viability, traditional lab experiments, such as gene knockdowns, can prove inconclusive and need to be complemented by a high-quality computational process. Here, using an extensive data collection, we create a robust library of nucleoporin protein sequences and their respective family-specific position-specific scoring matrices. By extensively validating each profile in different settings, we propose that the created profiles can be used to detect nucleoporins in proteomes with high sensitivity and specificity compared to existing methods. This library of profiles and the underlying sequence data can be used for the detection of nucleoporins in target proteomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.