Abstract

AbstractAdvances in high‐performance computing have enabled large‐eddy simulations (LES) of turbulence, convection, and clouds. However, their potential to improve parameterizations in global climate models (GCMs) is only beginning to be harnessed, with relatively few canonical LES available so far. The purpose of this paper is to begin creating a public LES library that expands the training data available for calibrating and evaluating GCM parameterizations. To do so, we use an experimental setup in which LES are driven by large‐scale forcings from GCMs, which in principle can be used at any location, any time of year, and in any climate state. We use this setup to create a library of LES of clouds across the tropics and subtropics, in the present and in a warmer climate, with a focus on the transition from stratocumulus to shallow cumulus over the East Pacific. The LES results are relatively insensitive to the choice of host GCM driving the LES. Driven with large‐scale forcing under global warming, the LES simulate a positive but weak shortwave cloud feedback, adding to the accumulating evidence that low clouds amplify global warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call