Abstract
In this paper, we show that every Banach space with a Schauder basis can be seen as a totally ordered vector space. Indeed, this order can be considered as a lexicographical order since it is a generalization of lexicographical order in $\mathbb{R}^{n}.$ We also provide order structural properties of the order by approaching geometrical (cone) sense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.