Abstract

We present a versatile numerical approach to simulating various magnetic phenomena using a level-set method. At the heart of our method lies a novel two-way coupling mechanism between a magnetic field and a magnetizable mechanical system, which is based on the interfacial Helmholtz force drawn from the Minkowski form of the Maxwell stress tensor. We show that a magnetic-mechanical coupling system can be solved as an interfacial problem, both theoretically and computationally. In particular, we employ a Poisson equation with a jump condition across the interface to model the mechanical-to-magnetic interaction and a Helmholtz force on the free surface to model the magnetic-to-mechanical effects. Our computational framework can be easily integrated into a standard Euler fluid solver, enabling both simulation and visualization of a complex magnetic field and its interaction with immersed magnetizable objects in a large domain. We demonstrate the efficacy of our method through an array of magnetic substance simulations that exhibit rich geometric and dynamic characteristics, encompassing ferrofluid, rigid magnetic body, deformable magnetic body, and multi-phase couplings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.