Abstract
Magnetic resonance (MR) image segmentation plays an essential role for brain disease diagnosis; however, suffered from low contrast, intensity inhomogeneity, noise and asymmetry of the intensity distribution, segmentation methods are always difficult to achieve satisfactory results. In this paper, we propose a novel level set method for brain MR image segmentation with consideration of these problems. We firstly generate a new region descriptor based on asymmetric Gaussian distributions in order to fit different shapes of observed nonsymmetric data. Secondly, we utilize the spatial distance and intensity similarity information of neighborhood pixels to extract local anisotropic spatial information to balance the noise reduction and detail preservation. After that, the extracted information and bias field information are combined to improve the asymmetric region descriptor utilized in the level set framework. Finally, we define a maximum likelihood energy functional on the whole image, integrating the local anisotropic spatial information, the bias field information and the asymmetric distributions. The experimental results on synthetic and clinical images demonstrated that our method can achieve desirable performance in spite of the severe noise and intensity inhomogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.