Abstract
An approach is presented for the thickness optimization of stiffened composite skins, which guarantees the continuity (blending) of plies over all individual panels. To fulfill design guidelines with respect to symmetry, covering ply, disorientation, percentage rule, balance, and contiguity of the layup, first a stacking sequence table is generated. Next, a level-set gradient-based method is introduced for the global optimization of the location of ply drops. The method aims at turning the discrete optimization associated with the integer number of plies into a continuous problem. It gives the optimum thickness distribution over the structure in relation to a specific stacking sequence table. The developed method is verified by application to the well-known 18-panel Horseshoe Problem. Subsequently, the proposed method is applied to the optimization of a composite stiffened skin of a wing torsion box. The problem objective is mass minimization and the constraint is local buckling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.