Abstract

Curved grid stiffeners, compared to straight stiffeners, offer greater flexibility in adjusting the force transmission paths and give better structural performance. In this paper, a level-set-based density method is employed to generate layouts of curved grid stiffeners so that the critical buckling load factor (BLF) of the stiffened structures is improved. During the optimization process, volume constraint is incorporated to control material utilization, and gradient constraints are employed to maintain uniformity in the width of the stiffeners. Finally, the proposed method is demonstrated through several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.