Abstract
The proliferating cell nuclear antigen (PCNA) has emerged as a promising candidate for the development of novel cancer therapeutics. PCNA is a nononcogenic mediator of DNA replication that regulates a diverse range of cellular functions and pathways through a comprehensive list of protein-protein interactions. The hydrophobic binding pocket on PCNA offers an opportunity for the development of inhibitors to target various types of cancers and modulate protein-protein interactions. In the present study, we explored the binding modes and affinity of molecule I1 (standard molecule) with the previously suggested dimer interface pocket and the hydrophobic pocket present on the frontal side of the PCNA monomer. We also identified potential lead molecules from the library of in-house synthesized 3-methylenisoindolin-1-one based molecules to inhibit the protein-protein interactions of PCNA. Our results were based on robust computational methods, including molecular docking, conventional, steered, and umbrella sampling molecular dynamics simulations. Our results suggested that the standard inhibitor I1 interacts with the hydrophobic pocket of PCNA with a higher affinity than the previously suggested binding site. Also, the proposed molecules showed better or comparable binding free energies as calculated by the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach and further validated by enhanced umbrella sampling simulations. In vitro and in vivo methods could test the computationally suggested molecules for advancement in the drug discovery pipeline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.