Abstract

The results of an investigation on the interference effects of the tandem square cylinders exposed to a uniform flow are presented in this paper. Time-dependent and three-dimensional flow simulations are carried out using large eddy simulation with a one-equation subgrid model. An incompressible three-dimensional finite volume code with a collocated grid arrangement is used for solving filtered Navier–Stokes equations. These equations are solved with an implicit fractional two-step method. Simulations are conducted with different Reynolds numbers between 103 and 105. The longitudinal spacing between the cylinders is selected 4D for the chosen Reynolds numbers, where D is the side of the cylinders. Also the effect of the spacing between cylinders, ranging from 1D to 12D, is studied for the selected Reynolds numbers. The instantaneous flow field is studied by analyzing the vortices, pressure, streamlines and Q-criterion to assist understanding of the various flow patterns, vortical structures and Kelvin–Helmholtz vortices in the separating shear layers. The hysteresis is observed in a certain range of the gap spacing, which this range depends on the selected Reynolds number. The global results are also computed and compared with available experimental results. The results indicate that there is a satisfactory agreement between the predictions and available experimental data considering the fine grid adopted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.