Abstract
Abstract A recent article [1] considered the so-called ‘ideal curve flow’, a sixth-order curvature flow that seeks to deform closed planar curves to curves with least variation of total geodesic curvature in the L2 sense. It was critical in the analysis in that article that there was a length bound on the evolving curves. It is natural to suspect therefore that the length-constrained ideal curve flow should permit a more straightforward analysis, at least in the case of small initial ‘energy’. In this article we show this is indeed the case, with suitable initial data providing a flow that exists for all time and converges smoothly and exponentially to a multiply-covered round circle of the same length and winding number as the initial curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.