Abstract

We present a hierarchical Bayesian model (HBM) to estimate the growth parameters, production, and production over biomass ratio (P/B) of resident brown trout (Salmo trutta fario) populations. The data which are required to run the model are removal sampling and air temperature data which are conveniently gathered by freshwater biologists. The model is the combination of eight submodels: abundance, weight, biomass, growth, growth rate, time of emergence, water temperature, and production. Abundance is modeled as a mixture of Gaussian cohorts; cohorts centers and standard deviations are related by a von Bertalanffy growth function; time of emergence and growth rate are functions of water temperature; water temperature is predicted from air temperature; biomass, production, and P/B are subsequently computed. We illustrate the capabilities of the model by investigating the growth and production of a brown trout population (Neste d'Oueil, Pyrénées, France) by using data collected in the field from 2005 to 2010.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.