Abstract

Protozoa Leishmania donovani (Ld) is the main cause of the endemic disease leishmaniasis. Spermidine synthase (SS), an important enzyme in the synthetic pathway of polyamines in Ld, is an essential element for the survival of this protozoan. Targeting SS may provide an important aid for the development of drugs against Ld. However, absence of tertiary structure of spermidine synthase of Leishmania donovani (LSS) limits the possibilities of structure based drug designing. Presence of the same enzyme in the host itself further challenges the drug development process. We modeled the tertiary structure of LSS using homology modeling approach making use of homologous X-ray crystallographic structure of spermidine synthase of Trypanosoma cruzi (TSS) (2.5Å resolution). The modeled structure was stabilized using Molecular Dynamics simulations. Based on active site structural differences between LSS and human spermidine synthase (HSS), we screened a large dataset of compounds against modeled protein using Glide virtual screen docking and selected two best inhibitors based on their docking scores (−10.04 and −13.11 respectively) with LSS and having least/no binding with the human enzyme. Finally Molecular Dynamics simulations were used to assess the dynamic stability of the ligand bound structures and to elaborate on the binding modes. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.