Abstract

Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras V ˜ 1 defined by the identity y 1 ( y 2 y 3 ) ( y 4 y 5 ) ≡ 0 . We give a complete description of the space of multilinear identities in the language of Young diagrams through the representation theory of the symmetric group. As an outcome we show that the variety V ˜ 1 has almost polynomial growth, i.e., the sequence of codimensions of V ˜ 1 cannot be bounded by any polynomial function but any proper subvariety of V ˜ 1 as polynomial growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.